Molybdenum and Tungsten Complexes with Side-on Co-ordinated SPPh₂-Ligands. X-Ray Crystal Structure Determination of Mo(CO)₂(PPh₃)(η²-SPPh₂)₂.CH₂Cl₂

By HUUB P M M AMBROSIUS,* JAN H NOORDIK, and GERRY J A ARIAANS (Departments of Inorganic Chemistry and Crystallography, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands)

Summary $M(CO)_3Cl(\eta^5-C_5H_5)$ and $M(CO)_3(PPh_3)_2Cl_2$ (M = Mo, W) react with SPPh₂H and Et₃N to give $M(CO)_2(\eta^5-C_5H_5)(\eta^2-SPPh_2)$ and $M(CO)_2(PPh_3)(\eta^2-SPPh_2)_2$, respectively, an X-ray crystal structure determination of $Mo(CO)_2(PPh_3)(SPPh_2)_2$ reveals a 7-co-ordinate pseudopentagonal bipyramidal geometry for the molybdenum atom with an almost planar configuration for the sulphur and phosphorus atoms

THE SPPh₂-ligand is known to co-ordinate end-on by sulphur in Rh and Ir complexes¹ or to act as bridge between two metal atoms *via* sulphur and phosphorus ² Recently the first example of a side-on bonded SPPh₂-ligand was reported for Rh-complexes ³ We report here the reactions of SPPh₂H with $M(CO)_3Cl(\eta^5-C_5H_5)$ and $M(CO)_3(PPh_3)_2Cl_2$

(M = Mo, W) giving complexes with side-on co-ordinated SPPh₂-ligands The complexes (1a) and (1b) were prepared by refluxing SPPh₂H and M(CO)₃Cl(η^{5} -C₃H₅) (1:1) for several hours with an excess of Et₃N in benzene Et₃NHCl was filtered off and the products were precipitated with hexane Analytical data are consistent with the empirical

$$M(CO)_{2}(\eta^{5}-C_{3}H_{5})(\eta^{2}-SPPh_{2})$$
(1) a; M = Mo
b; M = W

$$M(CO)_{2}(PPh_{3})(\eta^{2}-SPPh_{2})_{2}$$
(2) a; M = Mo
b: M = W

TABLE. ${}^{31}P{}^{1}H$ N.m.r. and i.r. spectra for (1) and (2)

	δ(³¹	P) a				
	SPPh ₂	PPh3	Vcob		v _{P=8} °	VM-8 ^c
(1a) (1b) (2a) (2b)	$-46.40 \\ -10.92^{d} \\ -64.46(D)^{e} \\ -35.04^{f}$		1958vs 1942vs 1947m 1923w	187 3 vs 1852vs 1871vs 1852vs	514s 520s 532s 530s	 372m 384m

^a In p.p.m. relative to $O=P(OMe)_3$ for compounds in C_6D_6 solution using the solvent as internal lock; upfield shifts are positive. ^b Measured in CH₅Cl₂ solution; v in cm⁻¹; v = very, s = strong, m = medium, w = weak. ^c Measured in CSI pellets: ${}^{d} I J({}^{183}W{}^{-31}P) = 233.6$ Hz. ^e D = doublet, T = triplet: ${}^{2}J(P{}-P) = 3.75$ Hz. ${}^{1}J({}^{183}W{}^{-31}P) = 195$ Hz. ${}^{g} I J({}^{183}W{}^{-31}P) = 233.6$ Hz. ${}^{g} I J({}^{g} I J({}^{183}W{}^{-31}P) = 233.6$ Hz. ${}^{g} I J({$ 265 Hz.

formula MC₁₉H₁₅O₂SP and the complexes are monomeric in toluene solution. The bis-diphenylphosphine-sulphidocomplexes (2a) and (2b) were prepared by stirring a suspension of M(CO)₃(PPh₃)₂Cl₂ with 2 equiv. of SPPh₂H in the presence of an excess of Et₃N for a few hours. The Et₃NHCl was filtered off, the solution evaporated to dryness, and the product recrystallized from CH₂Cl₂-n-hexane. The products are monomeric in CH₂Cl₂ solution and their analytical data are consistent with the empirical formula $MC_{44}H_{35}P_3S_2O_2$. Suitable crystals for X-ray analysis of (2a) were obtained from CH_2Cl_2 -n-hexane (see later).

 ${}^{31}\mathrm{P}\{{}^{1}\mathrm{H}\}$ N.m.r. and i.r. parameters are given in the Table. The v_{PS} values for these complexes are about 100 cm^{-1} lower than in the free ligand, while in the spectra of (2a) and (2b) an M-S vibration is observed. The chemical shift of the ${\rm SPPh}_2\text{-phosphorus}$ in the ${}^{31}{\rm P}\{{}^{1}{\rm H}]$ n.m.r. spectra shows a considerable sensitivity to changes in coligands bonded to the central metal. Complex (2a) shows P-P coupling between PPh₃ and the two equivalent SPPh₂phosphorus atoms, which is not observed in the spectrum of (2b).

Crystal data: C44H35MoP3S2O2.CH2Cl2, triclinic, space group $P\overline{1}$, a = 13.635(2), b = 14.680(2), c = 12.007(2) Å, $\alpha = 114.59(2), \beta = 98.83(2), \gamma = 82.56(2)^{\circ}, U = 2153.7 \text{ Å}^3,$ Z = 2, $D_c = 1.440$ g cm⁻³.

The X-ray data were measured on a CAD 4 diffractometer using a θ -2 θ scan, with monochromated Mo- K_{α} radiation. Control reflections showed no indication of crystal decay during the measurements. A total of 24,552 reflections were measured from which 11,963 symmetryindependent reflections remained after averaging, of which 10,186 had $I > 3\sigma(I)$ (σ based on counting statistics). The position of the molybdenum atom was obtained from a Patterson synthesis. The other atoms were found from successive difference Fourier syntheses. The structure was refined by full-matrix least-squares to a final R-value of 0.058. Results of the crystal structure determination are shown in the Figure.[†] The structure can be considered as

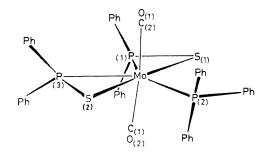


FIGURE. The molecular structure of $Mo(CO)_2(PPh_3)(\eta^2-SPPh_2)_2$ (2a). Selected bond distances and angles: Mo-S(1) 2.613(2) $Mo-S(2) = 2\cdot630(2), Mo-P(1) = 2\cdot401(2), Mo-P(2) = 2\cdot542(2), Mo-P(3) = 2\cdot382(2), Mo-C(1) = 2\cdot007(7), Mo-C(2) = 2\cdot027(7), P(1)-S(1) = 2\cdot013(2), P(3)-S(2) = 2\cdot008(2)$ Å; P(1)-Mo-P(3) = 96.74(6), P(1)-Mo-S(1) = 2\cdot013(2), P(3)-S(2) = 2\cdot008(2) Å; P(1)-Mo-P(3) = 96.74(6), P(1)-Mo-S(1) = 2\cdot013(2), P(3)-S(2) = 2\cdot013(2), P(3)-S(2) = 2\cdot013(2), P(3)-S(2) = 2\cdot013(2), P(3)-S(3) = 2\cdot03(2), P(3)-S(3), P(3)-S(3) = 2\cdot03(2), P(3), P(2)-Mo-S(2) $81 \cdot 49(5)$ Mo-P(1)-S(1)Mo-S(1)-P(1) = 60.91(6), $Mo-S(2)-P(3) 60.04(7)^{\circ}$.

a pentagonal bipyramid with a 7-co-ordinate Mo. The two CO-groups are axial and the PPh₃ and P and S of both SPPh₂-ligands are equatorial. The central Mo obeys the 18-electron rule. It can be considered as in the oxidation state Mo¹¹ and the two SPPh₂-ligands as uninegative, bidentate. four-electron donors.

It is interesting to note the similarity between (22) and the 18-electron $ML_3(\eta^2-L')_2$ compounds like $IrCl(PPh_3)_2$ - $(\eta^2-C_2H_4)_2$ and $IrCl(PPh_3)_2(\eta^2-C_2)(\eta^2-C_2H_4)$.⁴ The P_3S_2 core is planar and the PS distances found (2.015 Å) are closer to the P=S bond distance (1.95 Å) than P-S (2.18 Å). The great sensitivity of the ³¹P chemical shift towards the electron density on the central metal is comparable to the well known sensitivity of ¹³C in η^2 -olefin complexes.

(Received, 16th May 1980; Com. 532.)

† The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

- ² K. P. Wagner, R. W. Hess, P. M. Treichel, and J. C. Calabrese, *Inorg. Chem.*, 1975, 14, 1121; B. Walther, B. Messbauer, and H. Meyer, *Inorg. Chim. Acta*, 1979, 37, L525; E. Lindner and B. Schilling, *Chem. Ber.*, 1977, 110, 3889. ³ D. H. M. W. Thewissen, *J. Organomet. Chem.*, 1980, in the press.

 - ⁴ A. L. Onderdelinden and A. van der Ent, Inorg. Chim. Acta, 1973, 7, 203.

¹ V. Marsala, F. Faraone, and P. Piraino, J. Organomet. Chem., 1977, 133, 301.